Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pacing Clin Electrophysiol ; 47(4): 496-502, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38462721

RESUMO

BACKGROUND: Inappropriate shock (IAS) caused by subcutaneous air entrapment (AE) in an early period after subcutaneous implantable cardioverter defibrillator (S-ICD) implantation has been reported, however, no detailed data on air volume are available. We evaluated the subcutaneous air volume after implantation and its absorption rate one week after implantation. METHODS: Patients who underwent S-ICD implantation in our hospital received chest CT scans immediately after implantation and followed up 1 week later. The total subcutaneous air volume, air around the generator, the distal electrode, and the proximal electrode within 3 cm were calculated using a three-dimensional workstation. Fat areas at the level of the lower edge of the generator were also analyzed. RESULT: Fifteen patients received CT immediately after implantation. The mean age was 45.6 ± 17.9 (66.7% of men), and the mean body mass index was 24.3 ± 3.3. The three-incision technique was applied in seven patients and two-incision technique was in the latter eight patients. The mean total subcutaneous air volume was 18.54 ± 7.50 mL. Air volume around the generator, the distal electrode, and the proximal electrode were 11.05 ± 5.12, 0.72 ± 0.72, and 0.88 ± 0.87 mL, respectively. Twelve patients received a follow-up CT 1 week later. The mean total subcutaneous air was 0.25 ± 0.45 mL, showing a 98.7% absorption rate. CONCLUSION: Although subcutaneous air was observed in all patients after S-ICD implantation, most of the air was absorbed within 1 week, suggesting a low occurrence of AE-related IAS after a week postoperation.


Assuntos
Desfibriladores Implantáveis , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Desfibriladores Implantáveis/efeitos adversos , Cardioversão Elétrica , Implantação de Prótese/efeitos adversos , Implantação de Prótese/métodos , Tomografia Computadorizada por Raios X , Tomografia , Resultado do Tratamento
2.
ESC Heart Fail ; 7(2): 588-603, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31984667

RESUMO

AIMS: Doxorubicin (DOX)-induced heart failure has a poor prognosis, and effective treatments have not been established. Because DOX shows cumulative cardiotoxicity, we hypothesized that minimal cardiac remodelling occurred at the initial stage in activating cardiac fibroblasts. Our aim was to investigate the initial pathophysiology of DOX-exposed cardiac fibroblasts and propose prophylaxis. METHODS AND RESULTS: An animal study was performed using a lower dose of DOX (4 mg/kg/week for 3 weeks, i.p.) than a toxic cumulative dose. Histological analysis was performed with terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling assay, picrosirius red staining, and immunohistochemical staining. The mechanism was analysed in vitro with a low dose of DOX, which did not induce cell apoptosis. Microarray analysis was performed. Differentially expressed genes were confirmed by enrichment analysis. Mitochondrial damage was assessed by mitochondrial membrane potential. The production of inflammatory cytokines and fibrosis markers was assessed by western blot, quantitative polymerase chain reaction, and ELISA. A phosphokinase antibody array was performed to detect related signalling pathways. Low-dose DOX did not induced cell death, and fibrosis was localized to the perivascular area in mice. Microarray analysis suggested that DOX induced genes associated with the innate immune system and inflammatory reactions, resulting in cardiac remodelling. DOX induced mitochondrial damage and increased the expression of interleukin-1. DOX also promoted the expression of fibrotic markers, such as alpha smooth muscle actin and galectin-3. These responses were induced through stress-activated protein kinase/c-Jun NH2-terminal kinase signalling. A peroxisome proliferator-activated receptor (PPARγ) agonist attenuated the expression of fibrotic markers through suppressing stress-activated protein kinase/c-Jun NH2-terminal kinase. Furthermore, this molecule also suppressed DOX-induced early fibrotic responses in vivo. CONCLUSIONS: Low-dose DOX provoked reactive fibrosis through sterile inflammation evoked by the damaged mitochondria.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Animais , Doxorrubicina , Fibrose , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/patologia , Inflamação , Camundongos , Miócitos Cardíacos/patologia
3.
PLoS One ; 14(9): e0221940, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31513610

RESUMO

Although doxorubicin (DOX)-induced cardiomyopathy causes lethal heart failure (HF), no early detection or effective treatment methods are available. The principal mechanisms of cardiotoxicity are considered to involve oxidative stress and apoptosis of cardiomyocytes. However, the effect of DOX on cardiac fibroblasts at non-lethal concentrations remains unknown. The aim of this study was to investigate the direct effect of doxorubicin on the activation of cardiac fibroblasts independent of cell death pathways. We first found that DOX induced α-SMA expression (marker of trans-differentiation) at a low concentration range, which did not inhibit cell viability. DOX also increased MMP1, IL-6, TGF-ß and collagen expression in human cardiac fibroblasts (HCFs). In addition, DOX promoted Akt and Smad phosphorylation. A Smad inhibitor prevented DOX-induced α-SMA and IL-6 protein expression. An PI3K inhibitor also prevented MMP1 mRNA expression in HCFs. These findings suggest that DOX directly induces fibrotic changes in HCFs via cell death-independent pathways. Furthermore, we confirmed that these responses are organ- and species-specific for HCFs based on experiments using different types of human and murine fibroblast cell lines. These results suggest potentially new mechanisms of DOX-induced cardiotoxicity from the viewpoint of fibrotic changes in cardiac fibroblasts.


Assuntos
Doxorrubicina/farmacologia , Fibroblastos/citologia , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 1 da Matriz/genética , Miócitos Cardíacos/citologia , Actinas/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Transdiferenciação Celular/efeitos dos fármacos , Células Cultivadas , Colágeno/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-6/metabolismo , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Especificidade de Órgãos , Transdução de Sinais/efeitos dos fármacos , Especificidade da Espécie
4.
Physiol Rep ; 6(9): e13687, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29722156

RESUMO

Mechanical stresses play important roles in the process of constructing and modifying heart structure. It has been well established that stretch force acting on cardiac fibroblasts induces fibrosis. However, the effects of compressive force, that is, hydrostatic pressure (HP), have not been well elucidated. We thus evaluated the effects of HP using a pressure-loading apparatus in human cardiac fibroblasts (HCFs) in vitro. In this study, high HP (200 mmHg) resulted in significant phosphorylation of Akt in HCFs. HP then greatly inhibited glycogen synthase kinase 3 (GSK-3)α, which acts downstream of the PI3K/Akt pathway. Similarly, HP suppressed mRNA transcription of inflammatory cytokine-6, collagen I and III, and matrix metalloproteinase 1, compared with an atmospheric pressure condition. Furthermore, HP inhibited collagen matrix production in a three-dimensional HCF culture. Taken together, high HP suppressed the differentiation of fibroblasts into the myofibroblast phenotype. HP under certain conditions suppressed cardiac fibrosis via Akt/GSK-3 signaling in HCFs. These results might help to elucidate the pathology of some types of heart disease.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Pressão Hidrostática , Miofibroblastos/metabolismo , Proteína Oncogênica v-akt/metabolismo , Diferenciação Celular , Células Cultivadas , Proteínas da Matriz Extracelular/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Fosforilação , Transdução de Sinais , Estresse Fisiológico
5.
Sci Rep ; 8(1): 6277, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29674727

RESUMO

Transforming growth factor-ß1 (TGF-ß1) induces phenotypic changes in fibroblasts to become myofibroblasts with increased production of extracellular matrix (ECM) components and cytokines. It is also known that excessive activation of myofibroblasts accelerates cardiac fibrosis, remodeling, and thus cardiac dysfunction. However, no effective therapy has been established to prevent this process although recent clinical studies have demonstrated the effectiveness of hyperthermia in cardiac dysfunction. The aim of this study was to examine the molecular mechanism of hyperthermia on TGF-ß1-mediated phenotypic changes in cardiac fibroblasts. TGF-ß1 increased the expression of IL-6, α-smooth muscle actin (α-SMA), and collagen in human cardiac fibroblasts (HCFs). Hyperthermia (42 °C) significantly prevented these changes, i.e., increases in IL-6, α-SMA, and collagen, as induced by TGF-ß1 in a time-dependent manner. Immunoblotting showed that hyperthermia decreased Akt/S6K signaling, but did not affect Smad2 and Smad3 signaling. Pharmacological inhibition of Akt signaling mimicked these effects of hyperthermia. Furthermore, hyperthermia treatment prevented cardiac fibrosis in Ang II infusion mice model. Putting together, our findings suggest that hyperthermia directly inhibits TGF-ß-mediated activation of HCFs via suppressing Akt/S6K signaling.


Assuntos
Febre/metabolismo , Fibroblastos/metabolismo , Miocárdio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Actinas/metabolismo , Doença Aguda , Angiotensina II/administração & dosagem , Animais , Modelos Animais de Doenças , Febre/enzimologia , Febre/patologia , Humanos , Interleucina-6/biossíntese , Interleucina-6/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/citologia , RNA Mensageiro/genética
6.
J Pharmacol Sci ; 134(4): 203-210, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28779994

RESUMO

Iron-salen, i.e., µ-oxo-N,N'-bis(salicylidene)ethylenediamine iron (Fe(Salen)) was a recently identified as a new anti-cancer compound with intrinsic magnetic properties. Chelation therapy has been widely used in management of metallic poisoning, because an administration of agents that bind metals can prevent potential lethal effects of particular metal. In this study, we confirmed the therapeutic effect of deferoxamine mesylate (DFO) chelation against Fe(Salen) as part of the chelator antidote efficacy. DFO administration resulted in reduced cytotoxicity and ROS generation by Fe(Salen) in cancer cells. DFO (25 mg/kg) reduced the onset of Fe(Salen) (25 mg/kg)-induced acute liver and renal dysfunction. DFO (300 mg/kg) improves survival rate after systematic injection of a fatal dose of Fe(Salen) (200 mg/kg) in mice. DFO enables the use of higher Fe(Salen) doses to treat progressive states of cancer, and it also appears to decrease the acute side effects of Fe(Salen). This makes DFO a potential antidote candidate for Fe(Salen)-based cancer treatments, and this novel strategy could be widely used in minimally-invasive clinical settings.


Assuntos
Antídotos , Antineoplásicos/efeitos adversos , Antineoplásicos/toxicidade , Quelantes/efeitos adversos , Quelantes/toxicidade , Desferroxamina/farmacologia , Desferroxamina/uso terapêutico , Etilenodiaminas/efeitos adversos , Etilenodiaminas/toxicidade , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico , Ferro/efeitos adversos , Ferro/toxicidade , Injúria Renal Aguda/induzido quimicamente , Animais , Antineoplásicos/administração & dosagem , Quelantes/administração & dosagem , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Relação Dose-Resposta a Droga , Etilenodiaminas/administração & dosagem , Humanos , Ferro/administração & dosagem , Coelhos , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas
7.
J Physiol Sci ; 67(4): 497-505, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27613608

RESUMO

Melanoma has an extremely poor prognosis due to its rapidly progressive and highly metastatic nature. Several therapeutic drugs have recently become available, but are effective only against melanoma with specific BRAF gene mutation. Thus, there is a need to identify other target molecules. We show here that Transient receptor potential, canonical 3 (TRPC3) is widely expressed in human melanoma. We found that pharmacological inhibition of TRPC3 with a pyrazole compound, Pyr3, decreased melanoma cell proliferation and migration. Similar inhibition was observed when the TRPC3 gene was silenced with short-hairpin RNA (shRNA). Pyr3 induced dephosphorylation of signal transducer and activator of transcription (STAT) 5 and Akt. Administration of Pyr3 (0.05 mg/kg) to mice implanted with human melanoma cells (C8161) significantly inhibited tumor growth. Our findings indicate that TRPC3 plays an important role in melanoma growth, and may be a novel target for treating melanoma in patients.


Assuntos
Movimento Celular , Proliferação de Células , Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazóis/farmacologia , Interferência de RNA , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Canais de Cátion TRPC/antagonistas & inibidores , Canais de Cátion TRPC/genética , Fatores de Tempo , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA